Insight into gene fusion from molecular dynamics simulation of fused and un-fused IGPS (Imidazole Glycerol Phosphate Synthetase)

نویسندگان

  • Yu Yiting
  • Li Lei
  • Meena Kishore Sakharkar
  • Pandjassarame Kangueane
چکیده

Gene fusion produces proteins with novel structural architectures during evolution. Recent comparative genome analysis shows several cases of fusion/fission across distant phylogeny. However, the selection forces driving gene fusion are not fully understood due to the lack of structural, dynamics and kinetics data. Available structural data at PDB (protein databank) contains limited cases of structural pairs describing fused and un-fused structures. Nonetheless, we identified a pair of IGPS (imidazole glycerol phosphate synthetase) structures (comprising of HisF - glutaminase unit and HisH - cyclase unit) from S. cerevisiae (SC) and T. thermophilus (TT). The HisF-HisH structural units are domains in SC and subunits in TT. Hence, they are fused in SC and un-fused in TT. Subsequently, a domain-domain interface is formed in SC and a subunit-subunit interface in TT between HisF and HisH. Our interest is to document the structure and dynamics differences between fused and un-fused IGPS. Therefore, we probed into the structures of fused IGPS in SC and un-fused IGPS in TT using molecular dynamics simulation for 5ns. Simulation shows that fused IGPS in SC has larger interface area between HisF-HisH and greater radius of gyration compared to un-fused IGPS in TT. These structural features for the first time demonstrate the evolutionary advantage in generating proteins with novel structural architecture through gene fusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allosteric Communication Disrupted by a Small Molecule Binding to the Imidazole Glycerol Phosphate Synthase Protein-Protein Interface.

Allosteric enzymes regulate a wide range of catalytic transformations, including biosynthetic mechanisms of important human pathogens, upon binding of substrate molecules to an orthosteric (or active) site and effector ligands at distant (allosteric) sites. We find that enzymatic activity can be impaired by small molecules that bind along the allosteric pathway connecting the orthosteric and al...

متن کامل

Prokaryotic Expression of Influenza A virus Nucleoprotein Fused to Mycobacterial Heat Shock Protein70

Background and Aims: The novel approaches in influenza vaccination have targeted more conserved viral proteins such as nucleoprotein (NP) to provide cross protection against all serotypes of influenza A viruses. Influenza specific cytotoxic T lymphocytes (CTL) are able to lyse influenza-infected cells by recognition of NP, the major target molecule in virus for CTL responses. On the other hand,...

متن کامل

Altering the allosteric pathway in IGPS suppresses millisecond motions and catalytic activity.

Imidazole glycerol phosphate synthase (IGPS) is a V-type allosteric enzyme, meaning that its catalytic rate is critically dependent on activation by its allosteric ligand, N'-[(5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR). The allosteric mechanism of IGPS is reliant on millisecond conformational motions for efficient catalysis. We engineered four mutants ...

متن کامل

Expressional Comparison Between Episomal and Stable Transfection of a Selected tri-fusion Protein in Leishmania tarentolae

  Introduction: Leishmania tarentolae (L. tarentolae) is a nonpathogenic species of Leishmania genus that can be used as an expression system to produce immunogenic proteins or epitopes in vivo acting as an efficient and safe recombinant live vector in vaccinology. Cysteine proteases (CPs) are one group of Family C1 peptidases in Leishmania that are important for survival of the parasite within...

متن کامل

Glutamine Hydrolysis by Imidazole Glycerol Phosphate Synthase Displays Temperature Dependent Allosteric Activation

The enzyme imidazole glycerol phosphate synthase (IGPS) is a model for studies of long-range allosteric regulation in enzymes. Binding of the allosteric effector ligand N'-[5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) stimulates millisecond (ms) timescale motions in IGPS that enhance its catalytic function. We studied the effect of temperature on these cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformation

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2006